Heat Transfer Analysis for a Winged Reentry Flight Test Bed

نویسندگان

  • G. Pezzella
  • Antonio Viviani
  • Giuseppe Pezzella
چکیده

In this paper we deal with the aero-heating analysis of a reentry flight demonstrator helpful to the research activities for the design and development of a possible winged Reusable Launch Vehicle. In fact, to reduce risks in the development of next generation reusable launch vehicles, as first step it is suitable to gain deep design knowledge by means of extensive numerical computations, in particular for the aero-thermal environment the vehicle has to withstand during reentry. The demonstrator under study is a reentry space glider, to be used both as Crew Rescue Vehicle and Crew Transfer Vehicle for the International Space Station. It is designed to have large atmospheric manoeuvring capability, to test the whole path from the orbit down to subsonic speeds and then to the landing on a conventional runway. Several analysis tools are integrated in the framework of the vehicle aerothermal design. Between the others, we used computational analyses to simulate aerothermodynamic flowfield around the spacecraft and heat flux distributions over the vehicle surfaces for the assessment of the vehicle Thermal Protection System design. Heat flux distributions, provided for equilibrium conditions of radiation at wall and thermal shield emissivity equal to 0.85, highlight that the vehicle thermal shield has to withstand with about 1500 [kW/m] and 400 [kW/m] at nose and wing leading edge, respectively. Therefore, the fast developing new generation of thermal protection materials, such as Ultra High Temperature Ceramics, are available candidate to built the thermal shield in the most solicited vehicle parts. On the other hand, away from spacecraft leading edges, due to the low angle of attack profile followed by the vehicle during descent, the heat flux is close to values attainable with conventional heat shield. Also, the paper shows that the flying test bed is able to validate hypersonic aerothermodynamic design database and passenger experiments, including thermal shield and hot structures, giving confidence that a full-scale development can successfully proceed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal Trajectory Study of a Small Size Waverider and Wing-Body Reentry Vehicle at Suborbital Entry Speed of Approximately 4 km/s with Dynamic Pressure and Heat Rate Constraint

A numerical trajectory optimization study of two types of lifting-entry reentry vehicle has been presented at low suborbital speed of 4.113 km/s and -15 degree entry angle. These orbital speeds are typical of medium range ballistic missile with ballistic range of approximately 2000 km at optimum burnout angle of approximately 41 degree for maximum ballistic range. A lifting reentry greatly enha...

متن کامل

Bed Voidage and Heat Transfer in Non-Newtonian Liquid-Solid Fluidized Bed

The presence of particles in liquid-solid fluidized beds enhances the bed heat transfer, because the movement of the particles leads to an increased turbulence in the system. Moreover, the violent movement of the particles has a positive effect on fouling of the heat transfer surface. The aim of this investigation was to perform systematic measurements of bed voidage and heat transfer coeff...

متن کامل

A Three Stage Terminal Fuzzy Guidance Law for Reentry Vehicles

An advanced guidance law is developed for reentry phase of a reentry vehicle. It can achieve small miss distance and desired impact attitude angle, simultanceously. To meet this requirment a guidance law based on the fuzzy logic approach is developed. It is partitioned into three stages. This guidance law does not require linearization of missile engagement model. Line-of-sight and flight path ...

متن کامل

Heat Transfer of Liquid/ Solid Fluidized Beds for Newtonian and Non-Newtonian Fluids

The excellent performance of fluidized bed heat exchangers is due to the interaction between particles and heat transfer surface and to the mixing effects in the viscous sublayer. In this paper, the results of experimental investigations on heat transfer for a wide range of Newtonian and non-Newtonian (shear-thinning power law) fluids are presented. New design equations have been developed ...

متن کامل

CFD Simulation of Porosity and Particle Diameter Influence on Wall-to-Bed Heat Transfer in Trickle Bed Reactors

Wall-to-bed (or wall-to-fluid) heat transfer issues in trickle bed reactors (TBR) has an important impact on operation and efficiency in this category of reactors. In this study, the hydrodynamic and thermal behavior of trickle bed reactors was simulated by means of computational fluid dynamics (CFD) technique. The multiphase behavior of trickle bed reactor was studied by the implementation of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009